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in the considered computational region on the rest of the
circulation network. In contrast, hydraulic one-dimen-This work is aimed at developing efficient computational algo-

rithms for numerical simulation of steady-state incompressible vis- sional (or ‘‘integral’’) models of the whole cardiovascular
cous flows in nodes of circulation networks. High order accuracy circulation network take into account the mutual interac-
implicit stabilization algorithms based on upwind finite-difference tion of all components of the network, but they are incapa-
schemes were proposed. In order to treat complicated geometry,

ble of providing any data on the fluid flow structure, exceptdecomposition of computational domains was used. The effect of
the distribution of averaged pressure and mass flow ratean external circulation network was simulated by means of nonlocal

boundary conditions linking inlet and outlet flow parameters. A along the network (see, for example, [19]).
fluid flow related to specific cardiovascular operation was studied In this work an attempt to combine a global hydraulic
numerically as an example. Q 1997 Academic Press model of a circulation network with a detailed Navier–

Stokes simulation of flow in a pipe junction was under-
taken. In order to attain the aim, we proposed using one-1. INTRODUCTION
dimensional hydraulic models as the inlet/outlet boundary
conditions in Navier–Stokes models of flows in pipe junc-Flows in complex nodes of pipe networks are often en-

countered in a wide area of modern engineering applica- tions.
Configurations of considered pipe junctions are depictedtions and should be carefully investigated in order to opti-

mize the related technological processes. Unlike a number in Figs. 1.1 and 1.2. We call them T- and X-geometry,
respectively, and suppose that the T-geometry is part of aof detailed tables devoted to fluid flows in pipe junctions,

there are some problems which are still sparingly repre- simple circulation system shown in the right of Fig. 1.1,
while X-geometry corresponds to some complicated circu-sented. For example, the fundamental handbook of hy-

draulic resistance [8] provides a huge array of empirical lation system illustrated in the right of Fig. 1.2.
Fluid flow in the X-geometry is related to a surgicaldata, mostly for turbulent flow regimes, but it does not

contain adequate information on flow patterns. However, treatment of cardiovascular systems which is known as the
total cavopulmonary anastomosis [5, 15]. It is used to treatresistances to laminar flows and the corresponding vortex

structures are also of interest for engineering applications. congenital anomalies of the right side of the heart and
consists of, in particular, an artificial junction between theAdditionally, in some cases a pipe junction has to be con-

sidered as part of a specific circulation network with essen- superior vena cava and the right pulmonary artery. The
right side of the heart is almost excluded from the circula-tial mutual interaction. Cardiovascular and assisted circula-

tion systems may serve as examples of such networks. tion. The cavopulmonary junction should be made to max-
imize the circulation rate. On the other hand, it shouldAt present, numerical modelling of cardiovascular fluid

dynamics is undertaken in two main directions. The first not lead to extra-mechanical hemolysis. There are three
parameters to optimize in the model depicted in Fig. 1.2:one is based on multidimensional Navier–Stokes models

of flows in specific parts of the circulation system. For i.e., the inclination angles an , n 5 1, 2, and displacement
Dl between the inlet branch pipes. Figure 1.3 illustratesexample, flows in bifurcating arteries were studied numeri-

cally in [7], where further references can be found. Numeri- the operation of the total cavopulmonary anastomosis.
Numerical algorithms used in this work are built oncal model of 3D time-dependent fluid flow in an artificial

heart was developed and investigated in [10], and, finally, the basis of up to the fifth-order upwind finite-difference
schemes for the Navier–Stokes equations [17]. Such ana realistic numerical model of human heart was elaborated

and reported in [14]. These Navier–Stokes (or ‘‘differen- approach has been proven to be efficient for both incom-
pressible [17] and compressible [21] viscous flows. In ab-tial’’) models provide detailed data about local flow struc-

ture but do not take into account a feedback of the flow sence of boundary layers these upwind high order approxi-
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FIG. 1.1. T-junction in a simple circulation system.

mations are reasonably accurate, even on sparse numerical flows in pipes are usually free of boundary layers and, on
the other hand, their use reduces the computer resourcesgrids, and may be used to analyze sizable parts of circula-

tion networks efficiently. required for computation of the coefficients of finite-differ-
ence schemes. Also, the interpolation procedure in theGeometrical complexity of the considered computa-

tional domains renders it inefficient to use a global bound- overlapping area, which is crucial for achieving the overall
high accuracy [3], is much simpler and accurate for affineary-fitted curvilinear grid. In order to overcome this diffi-

culty, the computational domain was decomposed into a equidistant grids.
A kind of ADI factorization was employed to discretizenumber of relatively simple overlapping subdomains where

affine equidistant grids were used. These simple grids are the problem in time. This approach gives rather stable
numerical algorithms for multidimensional problems andquite advantageous for the problem in question, as laminar

FIG. 1.2. X-junction in a complicated circulation system.
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FIG. 1.3. Cardiovascular system before (left) and after (right) surgical treatment.

provides certain opportunities for parallelization. In par- (x0 , y0 ) with the origin as the geometrical center were used
in D0 . The coordinates in the inlet branch pipes wereticular, it is quite efficient for Navier–Stokes computa-

tions [13]. obtained from (x0 , y0 ) by applying the affine transform

2. GOVERNING EQUATIONS AND
BOUNDARY CONDITIONS

xn 5 x0 2 F(21)ny0 2
d0

2 G cot an 2 (21)n Dl
2

,

(2.1)The geometry of the whole computational domain pro-
vides a natural path for splitting into two or three parallelo- yn 5 (21)ny0 2

d0

2
, n 5 1, 2,

grams, as shown in Fig. 2.1. Ortholinear coordinates

FIG. 2.1. Computational domains and coordinate systems.
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depending on the inclination angle an . The diameter d0 of with
the central collecting pipe D0 was used as the unit length
in this work.

Fluid flows which are governed by the Navier–Stokes
Ax,0 5

­Wx,0

­U
5 1

0

1

0

b

2vx

vy

0

0

vx
2equations for primitive variables were considered. In order

to treat the steady-state flows, a variant of an artificial
compressibility method [4] was employed,

and explain what boundary conditions are acceptable at
x0 5 0. System (2.5) is hyperbolic, it models the dynamics

At
­U
­t

1
­Wx,n

­xn

1
­Wy,n

­yn of small disturbances of system (2.2) propagating along
the coordinate direction y0 5 const. Vectors N1 5
(1, 2byv21

x )T and N2,3 5 (bb21
p , vx 6 Ïv2

x 1 bbxb21
p )T are

5 Re21B F(1 1 cot2an )
­2U
­x2

n

2 2 cot an
­2U

­xn­yn

1
­2U
­y2

n
G , normal to its characteristics. Coefficients of the corre-

sponding characteristic relations are nontrivial solutions
(xn , yn ) [ Dn , t . 0, n 5 0, 1, 2, (2.2) of the equations g(Nk,1At 1 Nk,2Ax,0 ) 5 0, k 5 1, 2, 3,

and may be written in the form: g1 5 (vy[bpb22
y v2

x

(bx 2 2by ) 2 b]21, vy[b21
y vx(bx 2 2by ) 2 bby b21

p v21
x ]21, 1),where

g2,3 5 (vx 6 Ïv 2
x 1 bbxb21

p , 2b, 0). For the positive stream-
wise velocity component vx(t, 0) . 0, vectors N1 and N3

U 5 (p, vx , vy )T, At 5 diag(bp , bx , by ), are orthogonal to incoming characteristics and the corre-
sponding sets of characteristic coefficients g1 and g3 show

B 5 diag(0, 1, 1), a0 5
f
2

, (2.3) that some linear combinations of p, vx , vy and p, vx should
be specified at the inlet boundary. In the same manner,
we conclude that only a linear combination of p and the
streamwise velocity component vx , corresponding to g3 ,
should be specified at the outlet boundary, where stream-

Wx,n 5 1
bvx 2 (21)nbvy cot an

p 1 v2
x 2 (21)nvxvy cot an

vxvy 2 (21)n cot an (p 1 v2
y )
2 , wise velocity is negative, vx(t, 0) , 0. It is important to

note that g1 becomes simply (0, 0, 1) for the vanishing
cross-flow velocity component vy . Therefore, if the inlet
cross-flow velocity component vy is expected to be negligi-
ble, then it is expedient to specify it at that point.

Wy,n 5 (21)n 1
bvy

vxvy

p 1 v2
y
2 , (2.4) Besides certain requirements arising from the well-

posedness, the flow in question should be compatible with
the rest of the network. ‘‘Integral’’ models of hydraulic
networks are based on the conservation of mass and on a

and the usual notations for pressure p(t, xn , yn ), velocity given dependence of the pressure drop upon the mass flow
components vx (t, xn , yn ), vy (t, xn , yn ) in ortholinear coordi- rate [9]. In this research we have restricted ourselves by a
nates x0 , y0 , and the Reynolds number Re were used. linear dependence, which is a good approximation for the
Equations (2.2)–(2.4) reduce to the Navier–Stokes system human circulation system [2]. Then, the simplest network
if parameters of artificial compressibility are assigned the shown in Fig. 1.1 can be modelled by the formulas
following values: bp 5 0 and b 5 bx 5 by 5 1.

As usual, a constraint upon solutions to the system (2.2)– p1 5 pout ,
(2.4) that the velocity of the flow vanishes at the solid walls

p0n 5 pout 2 P 1 Rp(Q01 1 Q02 ) 1 R0nQ0n , (2.6)have been posed. Neither pressure nor mass flow rate are
given at the inlet/outlet boundaries of the domain D 5 n 5 1, 2,
D0 < D1 < D2 . These factors depend on the rest of the
network and have to be defined in the numerical experi- and a complicated version as featured in Fig. 1.2 may be
ment. Some special consideration is required in order to described in the form
evaluate the proper inlet/outlet boundary conditions.

Let us consider a problem
p0n 5 pout 2 P 1 Rp(Q01 1 Q02 ) 1 R0nQ0n ,

pn 5 pout 2 RnQn , (2.7)
At

­U
­t

1 Ax,0
­U
­x0

5 0, x0 . 0, t . 0 (2.5)
n 5 1, 2.
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In realistic computations, some violation of mass conser-
vation due to truncation or round-off errors is possible and
Eq. (2.9) has to be changed to

Qu 1 Qd 5 Ql 1 Qr 1 «, (2.10)

where « is a small number. The coupled system (2.7), (2.8),
and (2.10) is still uniquely resolvable but its solution will
depend on «. For instance,

Q1 5 d21(R2 1 r2 )h(R01 1 R02 1 r01 1 r02 )P

2 «[(R01 1 r01 )(R02 1 r02 ) 1 Rp(R01 1 R02 1 r01 1 r02 )]j

shows that a tiny leakage of mass in the ‘‘differential’’
model will lead to a variation of the mass flow rate of the
same order.

FIG. 2.2. An ‘‘integral’’ model of X-junction. More complicated ‘‘integral’’ models of the X-junction
would give more complicated, but still uniquely resolvable,
systems. Therefore, relations like (2.9) were not used ex-
plicitly and any regulation of proportion of Q1/(Q01 1 Q02 )

Here Q and R are mass flow rate and hydraulic resistance, were not undertaken, assuming that it should appear in
respectively. Values of Rp , R0n , Rn and P, pout were consid- the steady-state solution automatically, once a well-posed
ered as known parameters of the network and pump. For- initial boundary-value problem for (2.2)–(2.4) subjected
mulas (2.6), (2.7) assume that the pump works in a rated to conditions of consistency (2.6) or (2.7) is solved. More-
regime and is described by a linear equation pout 2 pin 5 over, the discrepancy between Q01 1 Q02 and Q1 1 Q2
P 2 Rp(Q01 1 Q02 ). may serve as a measure of accuracy of computed solutions.

Mass conservation relations Q1 5 Q01 1 Q02 and Q1 1 Specifically, a parabolic velocity profile with an unknown
Q2 5 Q01 1 Q02 were not added to (2.6) and (2.7), respec- maximum was assumed at the inlet to the node. Together
tively, because they are included in the ‘‘differential’’ flow with conditions of consistency (2.7) it gives
model implicitly as a constituent part of (2.2)–(2.4). The
following argument may serve as an explanation for com- vx(t, xn , Ln ) 5 v(t, xn ) cos an ,

(2.11)pleteness of the system (2.2)–(2.4) and (2.6) or (2.7). Let
vy(t, xn , Ln ) 5 v(t, xn ) sin an ,us consider an ‘‘integral’’ approximation to the flow in the

X-configuration, for example the one depicted in Fig. 2.2.
whereIt is represented by the system

pn 2 p00 5 rnQn , p00 2 p0n 5 r0nQ0n , n 5 1, 2, (2.8) v(t, xn ) 5
6

Rnd 3
n
Sd 2

n

4
2 x2

nDFpout 2 d 21
n Edn/2

2dn/2
p(t, j, Ln ) djG,

Q1 1 Q2 5 Q01 1 Q02 . (2.9)
n 5 1, 2.

The determinant of the system composed of (2.7), (2.8),
At the outlet boundaries in the central collecting pipe aand (2.9) equals

zero value of the cross-flow pressure gradient was specified,
resulting in

d 5 (R1 1 r1 )(R2 1 r2 )(R01 1 R02 1 r01 1 r02 )

p(t, (21)nL0/2, y) 5 pout 2 P 1 Rp1 (R01 1 r01 )(R02 1 r02 )(R1 1 R2 1 r1 1 r2 )

1 Rp(R1 1 R2 1 r1 1 r2 )(R01 1 R02 1 r01 1 r02 ) Ed0/2

2d0/2
[vx(t, L0/2, j) 2 vx(t, 2L0/2, j)] dj (2.12)

and does not vanish if the network is not degenerated. 1 (21)nR0n Ed0/2

2d0/2
vx(t, (21)nL0/2, j) dj, n 5 1, 2,

Therefore, the coupled system may be uniquely resolved
with respect to Q0n , Qn , p0n , Qn , and p00 for given R0n , Rn ,
r0n , rn , and P. if combined with the conditions of consistency (2.7).
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x0,i 5 ihx,0 , i 5 2Nx,0 , ..., Nx,0 , hx,0 5 L0/2Nx,0 ,As an alternative to (2.11) an assumption of zero cross-
flow velocity and pressure gradient may serve:

y0, j 5 jhy,0 , j 5 2Ny,0 , ..., Ny,0 , hy,0 5 d0/2Ny,0 ,

xn,i 5 ihx,n , i 5 2Nx,n , ..., Nx,n , hx,n 5 dn /2Nx,n , n 5 1, 2,
vx 5 vy cot an , 2

­p
­xn

5
­p
­yn

sin 2an , n 5 1, 2. (2.13)
yn, j 5 jhy,n , j 5 2ny,n , ..., Ny,n , hy,n 5 Ln/Ny,n , n 5 1, 2,

(3.1)
In the chosen coordinate system the cross-flow direction
coincides with the coordinate lines yn 5 const only if an 5 where integers Nx,n, Ny,n set the number of grid points in
f/2, such that an averaged value of p should be used in domains Dn , n 5 0, 1, 2. Integer parameters ny,n , n 5 1, 2
conditions of consistency (2.6) or (2.7), determine the extent of overlapping between numerical

grids in Dn and D0 .
In order to obtain efficient stabilization to steady-state,d 21

n Edn /2

2dn /2
p(t, j, Ln ) dj 5 pout 1 Rn Edn /2

2dn /2
vy(t, j, Ln ) dj,

we employed an implicit approximation of (2.2) in time
and developed an approximate factorization method forn 5 1, 2,

(2.14)

decomposed computational domain. Different approxi-
mate factorization of finite-difference approximations to

which are attached to (2.13). the system (2.2) were used in the central collecting pipe
Similarly, a parabolic stream-wise velocity law with an and in the inlet branch pipes. In D0 the corresponding

unknown maximum v0n,max may be posed at the outlets: system of finite-difference equations is

vx St, (21)n L0

2
, y0D5 (21)nv0n,max Sd 2

0

4
2 y2

0D , n 5 1, 2. (At 1 tG(1,2,n)
x,0,i, j )(E 1 tA21

t G(1,2,n)
y,0,i, j )

U(n11)
i, j 2 U (n)

i, j

t (3.2)

1 F (s,n)
x,0,i, j 1 F (s,n)

y,0,i, j 5 H (q,n)
xx,0,i, j 1 H (q,n)

yy,0,i, jThen, it may be transformed to the relations

while in Dn , n 5 1, 2, it isRp[vx(t, L0/2, y0 ) 2 vx(t, 2 L0/2, y0 )]

1 (21)nR0nvx(t, (21)nL0/2, y0 ) 5
6
d 3

0
Sd 2

0

4
2 y2

0D (2.15) (At 1 tG(1,2,n)
y,n,i, j )(E 1 tA21

t G(1,2,n)
x,n,i, j )

U(n11)
i, j 2 U(n)

i, j

t (3.3)
1 F (s,n)

x,n,i, j 1 F (s,n)
y,n,i, j 5 H (q,n)

xx,n,i, j 1 H (q,n)
yy,n,i, j 1 H (q,n)

xy,n,i, j .Fd 21
0 Edn/2

2dn/2
p(t, (21)nL0/2, j) dj 2 pout 1 PG , n 5 1, 2,

Here E 5 diag(1, 1, 1) is the identity matrix, t 5 t (n11) 2
t (n) is the time step, and U (n)

i, j 5 U(t (n), xi ,yj ) is a usual
by taking into account conditions of consistency (2.6) or notation for grid functions. Approximation (3.2) is written
(2.7). for all interior grid points, i.e., for (i, j) [ {2Nx,0 1 1, ...,

Eventually, we suppose that some initial conditions at Nx,0 2 1} 3 {2Ny,0 1 1, ..., Ny,0 2 1} and (3.3) for (i, j) [
t 5 0, {2Nx,n 1 1, ..., Nx,n 2 1} 3 {2ny,n 1 1, ..., Ny,n 2 1}.

The finite-difference expressions F (s,n)
e,n,i, j 5 F (s)

e,n (U (n)
i, j ),

U(0, xn , yn ) 5 U(0)(xn , yn ), (xn , yn ) [ Dn , n 5 0, 1, 2, s 5 1, 3, 5, are the s-order upwind approximations to the
(2.16) derivatives ­Wn,e /­en , e [ {x, yj, correspondingly. Terms

H (q,n)
e,n,i, j 5 H (q)

n,e (U (n)
i, j ), e [ {xx, yy, xyj, designate the central

difference approximation of the second q 5 2 or fourthare given for the system (2.2)–(2.4).
q 5 4 order to the right-hand side of (2.2). The factorizedThe arguments developed in this section are only heuris-
finite-difference operators are defined bytic and may not serve as a formal base for evaluation

of proper inflow/outflow boundary conditions. However,
experience shows that they generate well-posed problems

G(s,q,n)
e,n,i, j 5

­F (s)
e,n 1 H (q)

ee,n

­U U
U5U (n)

i, j

, e [ hx, yj, n 5 0, 1, 2,and plausible results in rather complicated flow situations.

3. NUMERICAL ALGORITHM
and were only used with s 5 1 and q 5 2, regardless of
the values of these indexes in terms F and H in (3.2)Equidistant numerical grids which may be represented

in the following form were used in this work, and (3.3).
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Our upwind approximations are exactly the same as neighboring the boundaries. Namely, in accordance with
[17], the formulaproposed in [17]. For the lowest order of approximation

to the term ­Wx,n/­xn we have, for example,
F (1,n)

x,n,i, j 5 (2hx,n )21[W (n)
x,n,i11, j 2 W (n)

x,n,i21, j

F (1,n)
x,n,i, j 5 (2hx,n )21 [W (n)

x,n,i11, j 2 W (n)
x,n,i21, j 2 «(A(1,n)

x,n,i11/2, j 2 A(2,n)
x,n,i11/2, j )(U (n)

i11, j 2 U (n)
i, j )

2 (A(1,n)
x,n,i11/2, j 2 A(2,n)

x,n,i11/2, j )(U (n)
i11, j 2 U (n)

i, j ) (3.4) 1 «(A(1,n)
x,n,i21/2, j 2 A(2,n)

x,n,i21/2, j )(U (n)
i, j 2 U (n)

i21, j )],

1 (A(1,n)
x,n,i21/2, j 2 A(2,n)

x,n,i21/2, j )(U (n)
i, j 2 U (n)

i21, j )],
with « 5 0.01, was employed there instead of (3.4).

At each time step the system (3.2), (3.3) is solved by
where A6

x,n 5 !sSx,n(Lx,n 6 uLx,n u)S21
x,n and Sx,n is the matrix the LU-decomposition of block-tridiagonal matrices

of the similarity transform which diagonalizes Ax,n 5 ­Wx,n / (At 1 tG (1,n)
x,0,i, j ), (E 1 tA21

t G (1,n)
y,0,i, j ), (At 1 tG (1,n)

x,n,i, j ), and
­U 5 Sx,nLx,nS21

x,n . The half-integer value of an index, for (E 1 tA21
t G(1,n)

y,n,i, j ) with the use of proper relationships at
example i 6 !s, indicates that the corresponding matrix has the boundaries of the computational subdomains. The se-
to be computed with U (n)

i61/2, j 5 !s(U (n)
i11/261/2, j 1 U (n)

i21/261/2, j ). quence of computations involved in this procedure is illus-
For the system (2.2)–(2.4), trated in Fig. 3.1.

First, (3.2) is solved with respect to wy,0 5 (E 1
tA21

t G(1,n)
y,0,i, j )(U (n11)

i, j 2 U (n)
i, j ) and (3.3) with respect to

wx,n 5 (E 1 tA21
t G (1,n)

x,n,i, j )(U (n11)
i, j 2 U (n)

i, j ). By doing so, we
suppose that both wy,0 and wx,n equal zero at the corre-

Sx,n 5 1 0

(21)n cot an

1

bjx,n

vx(hx,n 1 jx,n ) 1 b

vy(hx,n 1 jx,n ) 2 (21)nb cot an

sponding boundaries of the computational domains, i.e.,
at i 5 6Nx,0 and j 5 2ny,n , Ny,n , n 5 1, 2. This assumption,
restricting the approximation order by O(t), is crude for
nonstationary solutions certainly, but it is exact for the
steady-state versions and was used in stabilization success-
fully.

Second, equations (E 1 tA21
t G (1,n)

y,n,i, j )(U (n11)
i, j 2 U (n)

i, j ) 5

2bjx,n

vx(hx,n 2 jx,n ) 1 b

vy(hx,n 2 jx,n ) 2 (21)nb cot an
2 ,

wx,n , n 5 1, 2, are solved with respect to U (n11)
i, j 2 U (n)

i, j in
D1 and D2 for j 5 0, ..., Ny,n 2 1. Here zero flow velocity
at the pipe walls is specified as a boundary condition and
one further approximate relation is added in order to close
up the system of grid equations. The need for this addi-
tional relationship emanates from the use of noncompactSy,n 5 10

1

0

bjy,n

vx(vy 1 jy,n )

vy(vy 1 jy,n ) 1 b

2bjy,n

vx(vy 2 jy,n )

vy(vy 2 jy,n ) 1 b2 ,
finite-difference approximations to the system (2.2)–(2.4).
This closing relationship has been formed from the equa-
tion of conservation of the xn-component of momentum.
At the pipe walls it appears as

and
Lx,n 5 diag (hx,n , hx,n 1 jx,n , hx,n 2 jx,n )T, ­p

­xn

5
1

Re H(1 1 cot2an )
­2vx

­x2
n

2 2(21)n cot an
­2vx

­xn­yn
J (3.5)

Ly,n 5 diag (vy , vy 1 jy,n , vy 2 jy,n )T,

and was approximated by the second-order formula
where hx,n 5 vx 2 (21)nvy cot an , jx,n 5
Ïh2

x,n 1 b(1 1 cot2 an ), j y,n 5 Ïv2
y 1 b.

6(p(n11)
6Nx,n , j 2 p(n11)

6Nx,n 71, j )Formulas for higher order approximations are available
in [17] for a general curvilinear coordinate system in 3D.

5 7
1
2

(p(n)
6Nx,n , j 2 2p(n)

6Nx,n71, j 1 p(n)
6Nx,n72, j ) 2

1 1 cot2an

hx,n ReA simplified case is not repeated here. Approximations of
properly decreased orders s and q were employed in the
grid points which are close to the pipe walls as the high

(5v(n)
x,6Nx,n71, j 2 4v(n)

x,6Nx,n72, j 1 v(n)
x,6Nx,n73, j ) 6

(21)n cot an

2hy,n Reorder formulas were used in the grid points which are at
sufficient distance from the walls. However, the accuracy

(4v(n)
x,6Nx,n71, j11 2 v(n)

x,6Nx,n72, j11 2 4v(n)
x,6Nx,n71, j21 1 v(n)

x,6Nx,n72, j11 ).was kept at the level of the second-order approximation
by waiving the upwind approximation at the grid points (3.6)
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FIG. 3.1. Sequence of sweeps during each time step.

















In corner points almost the same formulas, but explicit
and averaged for Dn and D0 (see (3.10)), were used.

Computation of U (n11)
i,Ny,n

2 U (n)
i,Ny,n

is carried out by a special
procedure. Here, two boundary conditions (2.11) have
been approximated and one further equation obtained by

z0

?

?

?

zm

z

5

g0

?

?

?

gm

c

, (3.8)
discretization of the characteristic relationship correspond-
ing to the characteristic of (2.2)-(2.4) coming from the
interior of Dn along the lines xn 5 const has been added.
This additional equation was written in the form

where all entries are scalars. Corresponding formulas are1
2

(E 1 uLy,nuL21
y,n)S21

y,n HAt
­U
­t

1
­Wx,n

­xn

1
­Wy,n

­yn
rather cumbersome and are not cited here for the sake
of brevity.

The matrix of the system (3.8) is different of usual band
2 Re21B F(1 1 cot2an )

­2U
­x2

n

2 2 cot an
­2U

­xn­yn

1
­2U
­y2

n
GJ5 0,

matrixes, but it can be still efficiently solved demanding
O(Nx,n ) arithmetic operations. A suitable algorithm is

(xn , yn ) [ Dn , t . 0, n 5 1, 2, (3.7) given below:

and was approximated by the same scheme as the system
(2.2). All required formulas have been given earlier in this g0 5 2V21

0,0V0,1 , k 5 2V21
0,0w0 , x 5 V21

0,0 g0 ,
section. Values of functions in the grid points exterior to

gi 5 2(Vi,21gi21 1 Vi,0 )21Vi,1 ,Dn were refilled by the Lagrange interpolation formula.
The integrals in (2.11) were approximated by Simpson’s ki 5 2(Vi,21gi21 1 Vi,0 )21(Vi,21ki21 1 wi ),
rule.

xi 5 2(Vi,21gi21 1 Vi,0 )21(Vi,21xi21 2 gi ), i 5 1, ..., m,Approximation of (3.7) with both (2.11) and (2.13),
(2.14) may be reduced to the system of linear equations qm 5 km , hm 5 xm ,

qi 5 ki 1 giqi11 , hi 5 xi 1 gihi11 , i 5 m 2 1, ..., 0,







z 5 SV 1 Om
i50

ciqiD21 Sc 2 Om
i50

cihiD,

zi 5 qi z 1 hi , i 5 0, ..., m. (3.9)

V0,0

V1,21

0

? ? ?

0

0

c0

V0,1

V1,0

V2,21

? ? ?

? ? ?

? ? ?

? ? ?

0

V1,1

V2,0

? ? ?

0

0

cm23

0

0

V2,1

? ? ?

Vm21,21

0

cm22

? ? ?

? ? ?

? ? ?

? ? ?

Vm21,0

Vm,21

cm21

0

0

0

? ? ?

Vm21,1

Vm,0

cm

w0

w1

w2

? ? ?

wm21

wm

V

During the third stage the system of equations (E 1
tA21

t G(1,n)
y,0,i, j )(U (n11)

i, j 2 U (n)
i, j ) 5 wy,0 is solved with respect

to U (n11)
i, j 2 U (n)

i, j . Zero velocity and a closing relationship
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formed from the equation of conservation of the y0-compo- solution algorithm (3.9) is still suitable and efficient in this
case too.nent of momentum have been specified at the pipe walls

again. The corresponding formula is an obvious simplifica- The march along the artificial time t (or iterations with
respect to index n) proceeds until the stabilization pa-tion of (3.5):
rameter

­p
­y0

5
1

Re
­2vy

­y2
0

.
«(n11) 5 t21 max

i, j
Hup(n11)

i, j 2 p(n)
i, j u

up(n)
i, j u 1 d0

,
iv(n11)

i, j 2 v(n)
i, j i

iv(n)
i, j i 1 d0

J (3.11)

Its finite-difference approximation comes easily by analogy
with (3.6): becomes less than some given value «0 . Parameter d0 . 0

prevents division by zero occurring and v denotes the veloc-
ity vector (vx , vy ).6(p(n11)

i,6Ny,0
2 p(n11)

i,6Ny,071 )

5 7
1
2

(p(n)
i,6Ny,0

2 2p(n)
i,6Ny,071 1 p(n11)

i,6Ny,072 (3.10) 4. COMPUTATIONAL RESULTS

2
1

hy,0 Re
(5v(n)

y,i,6Ny,071 2 4v(n)
y,i,6Ny,072 1 v(n)

y,i,6Ny,073 ). A set of computations of fluid flows in T- and
X-geometries was carried out. Values of Dl [ [0,2d0 ],
a1 5 908, and a2 [ [508, 1308], where d0 is the diameter of

Here, special attention was paid not only to the computa- the inlet and outlet branch pipes considered. The Reynolds
tion of U (n11)

6Nx,0 , j 2 U (n11)
6Nx,0 , j , but also to the treatment of number was in the range [100, 1000]. The length of the

equations (E 1 tA21
t G(1,n)

y,0,i, j )(U (n11)
i, j 2 U (n)

i, j ) 5 wy,0 along central pipe was 10d0 . The inlet branch pipes were located
the grid lines, x0,i 5 const, which have common points symmetrically around the center of the outlet pipe having
with the boundaries of D1 and D2 . In order to solve grid 5d0 length. Most of the computations were carried out
equations along these lines, values of U (n11)

i,0 , computed at using numerical grids consisting of 11 3 101 (in D0 ) and
the second stage, have been used as the boundary condi- of 11 3 51 (in D1,2 ) nodes for h1 5 hx,n 5 hy,n 5 0.1. Finer
tions on the common boundaries of D0 and Dn , n 5 1, 2. numerical grids with h2 5 hx,n 5 hy,n 5 0.05 and h3 5
The reciprocal influence of the flow in D0 on that ones in hx,n 5 hy,n 5 0.025 were used in order to check accuracy
the inlet branches was taken into account on completion of the algorithm in practice.
of the third stage by redefinition of U (n11)

i, j for 2ny,n # j , For Re # 700 the value of «0 5 1023 in (3.11) gives
0 in the extension of Dn , n 5 1,2, to D0 . New values of satisfactory results. The number of time steps required to
flow parameters in grid points exterior to Dn were obtained obtain steady-state solutions was in the range 100 to 5000,
by using high order interpolation splines and values of the depending on the approximation order of the numerical
flow parameters U (n11)

i, j in nodes of the numerical grid in algorithm, the geometry of the junction, and on the Rey-
D0 . These interpolated flow parameters are used in compu- nolds number. Stabilization speed is crucially decreased
tations in Dn , n 5 1, 2, during the first stage of the next if Re exceeds some critical value, which depends on the
time step. Specifying the chosen coordinate system reduces geometry of the flow. Usually, this value is greater than
the interpolation to essentially one dimension. Moreover, 1000, but for some configurations it may be as small as
for certain values of the parameters, grid nodes of overlap- about 800. In general, it is possible to say that the critical
ping subdomains are the same and interpolation is not Reynolds number is greater than 700 for flows considered
required at all. in this work. Such deterioration of convergence to steady

Computation of U (n11)
6Nx,0 , j 2 U (n)

6Nx,0 , j at the outlets was state is not surprising for Reynolds numbers approaching
carried out in the same manner as the computation of a threshold of stability of steady-state regime. It may have
U (n11)

i,Ny,n
2 U (n)

i,Ny,n
at the inlets. The boundary condition (2.12) a very complex nature and deserves, probably, a separate

consideration.or (2.15) has been approximated and a system of two finite-
difference equations obtained by discretization of the char- In computational experiments values of the time step

were chosen as t 5 ch. It was possible to conduct most ofacteristic relationships corresponding to the characteristics
of (2.2)–(2.4) coming from the interior of D0 along the the computations with the first-order scheme for c 5 50.

The third- and fifth-order schemes have required valueslines y0 5 const has been added. Similarly to the inlet flow,
the resulting system of finite-difference equations may be of c not greater than 40 and 10, respectively, in the best

cases. It was found that the minimal extent of grid overlap-reduced to the system (3.8) with properly defined entries.
In this case the finite-difference systems for both outlets ping, corresponding to ny,n 5 21, is near the optimum. The

computational program was written in Fortran-77 and theare coupled and all the entries of the matrix of the system
(3.8) will be 2 3 2 matrixes, if Rp ? 0. However, the available computer code elapses every time step approxi-
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FIG. 4.1. Influence of the order of approximation and the grid step size on calculated velocity vector field: (a) First order, h 5 0.1; (b) third
order, h 5 0.1; (c) fifth order, h 5 0.1; (d) fifth order, h 5 0.025; (e) third order, h 5 0.05; (f ) fifth order, h 5 0.05.

mately 6 3 1024 s of ‘‘wall clock’’ time per grid node on were analyzed for some steady-state flow cases. Theoreti-
cally, si, j should equal 1, 3, and 5 for the first-, third-,Sun SPARC-10/51 with one processor.

In order to explore the efficient accuracy of the proposed and fifth-order schemes, respectively. In practice, its values
were slightly different than 1 for the first-order schemealgorithms, values of the parameter
and reasonably close to 3 in almost all grid points except
for small regions around the corner points in the third-si, j 5 log2 Hmax F uph1

(ih1 , jh1 ) 2 ph2
(ih1 , jh1 )u

uph2
(ih1 , jh1 ) 2 ph3

(ih1 , jh1 )u 1 d0
,

order algorithm. For the fifth-order scheme the value of
(4.1) si, j was not less than 4.3 in the grid points distant from the

pipe walls. However, the value of the effective approxima-
ivh1

(ih1 , jh1 ) 2 vh2
(ih1 , jh1 )i

ivh2
(ih1 , jh1 ) 2 vh3

(ih1 , jh1 )i 1 d0
GJ

tion order was considerably less (below 3) at the pipe walls
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FIG. 4.1. (continued)

and even less than 2 in the corner points. An important A(h)
xx 5

observation ascertained in this analysis is that approxima-
tion errors remain local, in practice.

Figures 4.1a–4.1c illustrate the influence of the order of
approximation of the scheme on the velocity vector field
in a T-junction for the numerical grid with hx,n 5 hy,n 5

b

Ïb 1 v2
x

vx

Ïb 1 v2
x

vy(Ïb 1 v2
x 2 uvx u)

Ïb 1 v2
x

bvx

Ïb 1 v2
x

b 1 2v2
x

Ïb 1 v2
x

vxvy(2Ïb 1 v2
x 2 uvx u)

Ïb 1 v2
x

0

0

2uvx u

.
0.1. A set of Figs. 4.1c, f, d shows the dependence of the
numerical solution on the grid step size for the fifth-order
scheme. Figure 4.1e completes the picture, providing the

1 2
velocity field obtained with the third-order scheme for
hx,n 5 hy,n 5 0.05. These figures visually demonstrate that
the third-order scheme is quite accurate and the fifth-order In stagnation points this term has an asymptotics as 221h

Ïb diag(1, 1, 0)­2U/­x2 which is quite competitive withone does not provide improvement of accuracy on the
crude grid hx,n 5 hy,n 5 0.1. However, the advantage be- natural dissipation Re21 diag(0, 1, 1)­2U/­x2 for large val-

ues of b, h, and Re.comes apparent on finer grids with steps hx,n , hy,n # 0.05,
while it is difficult to observe visually. It should be taken Figure 4.2a shows the effect of b 5 10 in the same

situation as depicted in Fig. 4.1a, where b 5 1. The influ-into account that the fifth-order algorithm involves many
more computations per time step and imposes considerably ence of b is much less for high order schemes using flux-

difference splitting, but it is still trackable in near to stagna-more severe restrictions on the value of t, resulting in
slower stabilization to the steady state. Probably, the third- tion regions as can be seen in Fig. 4.2b, where the flow

was calculated with b 5 10 and the same other conditionsorder algorithm is a more robust one, at least on crude
grids. as those plotted in Fig. 4.1c.

Algorithms presented in this paper use parameters ofIn the original work [4], the parameter of artificial com-
pressibility b was introduced as a coefficient at the diver- artificial compressibility bp , bx , by as coefficients at the

time derivatives (2.2)–(2.4) without involving them in thegence of the velocity vector. This parameter influences the
relaxation speed crucially but its involvement in the flux- flux-difference splitting. This approach corresponds to the

general idea of preconditioning by scaling variables [6]. Indifference splitting may result in severe numerical dissipa-
tion and dispersion. In particular, for the first-order scheme the case of a system of linear algebraic equations Au 5 f

it consists in transformation of the system Au 5 f into anthe residual of the finite-difference approximation includes
a numerical dissipation term 221hA(h)

xx ­2U/­x2, where equivalent system D1 A D 21
2 v 5 D1 f, where D1 and D2 are
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TABLE Idiagonal matrices and v 5 D2u. The stabilization method
applied to the transformed system may be written as Influence of Parameter bp on Convergence Rate (bx 5 by 5 1)

«(n)/bp 0.05 0.1 0.2 1 2
D 21

1
dV
dt

1 A D 21
2 V 5 f,

1023 200 140 140 180 220
1026 460 360 380 420 500
1029 1260 740 820 1080 1540which takes the form, after proper discretization,

V (n11) 2 V (n)

t
1 TV (n) 5 f.

Matrix T depends on the chosen time-discretization. It may a linearized problem in a simplified geometry, as bp , bx

and by do not vary from node to node of the grid.be, for example, T 5 D1 A D 21
2 or T 5 (E 1 tD1 A D 21

2 )21

D1 A D 21
2 for the explicit or implicit Euler finite-difference Another approach to introduction of scaling parameters,

togetherwiththeoreticalanalysis of theiroptimalvalueswasschemes, correspondingly. Choice of the matrices D1 and
D2 should provide the fastest convergence of V (n) to A 21f considered in [20]. In [12] these theoretically optimal values

were carefully checked by intensive Navier–Stokes compu-as n R y. In our specific case D 21
1 5 diag(diag(bp , bx ,

by ), ..., diag(bp , bx , by ), ..., diag(bp , bx , by )) and D 2 is the tations. Our observations are in a qualitative agreement
with results in [20, 12]. Some quantitative discrepancy mayidentity matrix. Operator T is rather complex because of

factorization and decomposition. be explained by large Courant numbers used in this work,
while the analysis in [20] holds for Courant numbers notWe have carried out a set of test runs with different

values of parameters bp , bx , and by . Typical results of the exceeding 1 by very much. Moreover, computations in [12]
confirmed the dependence of optimal b (which plays thevariation of bp are shown in Table I as number of time

steps required to reach certain stabilization level (3.11). same role as b21
p ) on the computational algorithm.

The T-configuration was used as a debugging tool andParameters bx and by affect stabilization rate too, but a
few test computations undertaken here could not reveal test case in this work. Figure 4.3 illustrates a fluid flow in

a symmetrical T-junction. Here and in the following figuresany more or less easily interpreted regularity. Alterna-
tively, optimal values of all three parameters may be esti- we reproduce central parts of the computational domains

only, because flow in the inlet and outlet regions was alwaysmated numerically by direct minimization of cond(T ) for

FIG. 4.2. Velocity vector fields calculated for b 5 10: (a) First order, h 5 0.1; (b) fifth order, h 5 0.1.
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FIG. 4.3. Velocity vector field and pressure level lines in a T-junction, Re 5 100.

uniform. Figure 4.3 may be compared to Fig. 3.2 from [1], severe disability of the right side of the heart. In particular,
if its pumping function is degenerated and the right sidewhere a similar flow was calculated for fixed values of

pressure at the inlet and outlets. of the heart creates an additional hydraulic resistance only,
then it is expedient to bypass it. Two main techniques wereAn example of fluid flow in the symmetrical X-junction

is shown in Fig. 4.4. The pressure in the center of the X- proposed by the time being: the Fontan atriopulmonary
connection and the total cavopulmonary anastomosis [5,junction is essentially higher than in the T-junction. Proba-

bly, this is the main reason which prevents flow separation 15]. The essence of the total cavopulmonary connection is
illustrated in Fig. 1.3.at the central pipe wall near the junction.

Proposed computational algorithms were used in numer- The energy resource of the human heart is strictly limited
and only about 10% of the power of the left side of the heartical study of fluid flows in X-junctions related to the total

cavopulmonary anastomosis in surgery of congenital heart is spent to move the blood in the pulmonary circulation if
the right side of the heart is disabled. Therefore, even aanomalies [5]. This operation is efficient in some cases of

FIG. 4.4. Velocity vector field and pressure level lines in an X-junction, Re 5 100.
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small increase of the mass flow rate may be of vital impor- stages of investigation of complicated problems. It provides
valuable information on possible computational peculiari-tance in some cases and the cavopulmonary junction should

be carefully optimized. On the other hand, the artificial ties and gives useful ideas on further refinements of the
model. See, for example, [18], where the numerical investi-junction should not lead to extra mechanical hemolysis. In

this work the circulation system depicted in Fig. 1.2 was gation of pulsating flows in T-configurations was also un-
dertaken in 2D geometry.considered as a hydrodynamical model of the total cavo-

pulmonary connection. There are three parameters to opti- Values of hydraulic resistances were estimated using the
data for pressure and blood mass flow rate in a normalmize, i.e., the inclination angles an , n 5 1, 2, and displace-

ment Dl between the inlet branch pipes. The human human body [2]. In particular, the total resistance of the
systemic circle was assumed to be 2.6 3 105 m21 ? s21 andanatomy imposes certain constraints on the admissible val-

ues of these parameters both in general and in particular. for the pulmonary circle, 3 3 104 m21 ? s21. The diameter
of the right pulmonary artery d0 5 0.015 m, the bloodIn accordance with [2], the Reynolds number in the vena

cava of a normal human is about 700 and the blood flow density % 5 1 kg ? m23 and an average flow velocity in the
vena cava V 5 0.2 m ? s21 were taken as basic units. Thus,may be considered as that of a laminar flow of Newtonian

liquid. Its dynamics is governed by the Navier–Stokes assuming a symmetry of the circulation network, required
resistances were estimated as R1 5 R2 5 585 and R01 5equations therefore. In children with an impaired right

side of the heart, pulsations in the venous systemic circula- R02 5 67.5. A zero value of Rp has also been assumed,
resulting in P 5 319. There is no requirement to knowtion are not as important as in a normal human and the

steady-state solutions of the Navier–Stokes system are rea- absolute values of pressure in this problem and the value
of pin 5 0 has been fixed. Typical computational resultssonable approximations for flows in the cavopulmonary

junction. Distensibility of the pipe walls has not been taken are presented in Figs. 4.5 and 4.6 for Re 5 500.
The following general observations were obtainedinto account, because it is not essential in the absence

of pulsations. Similar assumptions were admitted in the through a set of computations. The optimal value of the
inclination angle a2 is usually less than 908 and the optimalcomparative experimental study of the Fontan atriopul-

monary connection and the total cavopulmonary anasto- value of the displacement Dl is usually greater than 0 as
well. However, at large values of the displacement, greatermosis reported in [11].

Thus, the only crucial assumption we admitted in this than approximately 0.9d0 , a system of blocked vortices is
likely to appear with increasing mechanical hemolysis andmodel is a 2D consideration of an essentially 3D flow

case. This simplification is natural and expedient on certain the probability of clot formation (see Figs. 4.5 and 4.6).

FIG. 4.5. Velocity vector field and pressure level lines in an X-junction, a2 5 608.



76 VLADIMIR KARLIN

FIG. 4.6. Velocity vector field and pressure level lines in an X-junction, a2 5 1208.

Variations of the inclination angle a1 are difficult in the multiplied in three dimensions, indeed. However, recent
work [16] shows that high efficiency of stabilization canpractice of surgery and have not been considered in this in-

vestigation. be achieved by using algorithms based on very universal
preconditioned GMRES solvers.Beside free parameters a1,2 and Dl subjected to optimiza-

tion, the proposed circulation model includes a set of given Besides refinement of computational algorithms, some
developments of the physical flow model may be of interestparameters R1,2 , R01,02 , Rp , P, d0,1,2 , and Re. The values

of these parameters, in particular, asymmetry in R01 and for prospective research too. One of them is the employ-
ment of a detailed ‘‘integral’’ model of circulation network,R02 , vary from case to case and may affect the results of

optimization rather strongly. Additionally, variations in like [19], instead of the simplest one proposed in this work.
Also, it is important to advance the flow model towardsthe location of veins and arteries make it impossible to

give detailed universal recommendations. However, the time-dependent multiphase flow in order to get a chance
to treat hemolysis and thrombosis quantitatively.efficiency of the model gives an opportunity to analyze

every particular case promptly, on request.
As it was mentioned in Section 1, the main aim of this

work is to combine two types of mathematical models of 5. CONCLUSIONS
flows in pipe networks. In order to achieve this specific
aim effectively, some components of numerical algorithms Robust high-order approximation methods intended to

treat steady-state flows of viscous fluid in junctions of pipeswere intentionally simplified, resulting in the narrowing of
their area of applicability. In particular, the simplicity of of multicomponent circulation systems were developed.

Proposed methods were verified by solving a problemthe employed numerical grids causes degradation of accu-
racy as a1,2 tends to 08 or 1808. However, more sophisticated related to a surgical treatment of the cardiovascular system

which is known as the total cavopulmonary anastomosis.numerical grids can be easily adapted in this method by
using general space-discretization formulas from [17] and Some useful observations in regard to optimization of the

cavopulmonary connection were obtained. Unlike 2D con-interpolation procedures from [3], if required.
Implementation of ADI algorithms in the case of decom- sideration is obviously not enough for comprehensive solu-

tion of this problem, it proofs plausibility of the model ofposed geometries have required certain efforts in order to
find a suitable sequence of sweeps in subdomains, ensuring node–network interaction and efficiency of chosen compu-

tational approach.fast convergence to the steady state. These efforts will be
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9. R. W. Jeppson, Analysis of Flow in Pipe Networks, Ann Arbor Sci-Further directions of research in both refinement of the
ence, Ann Arbor, MI, 1983.computational algorithms and physical problems are out-

10. C. Kiris, S. E. Rogers, D. Kwak, and I. D. Chang, Computationlined.
of incompressible viscous flows through artificial heart devices with
moving boundaries, in Fluid Dynamics in Biology: Proceedings of an
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